Mitochondrial Dysfunction Mediated by Poly(ADP-Ribose) Polymerase-1 Activation Contributes to Hippocampal Neuronal Damage Following Status Epilepticus
نویسندگان
چکیده
Mitochondrial dysfunction plays a central role in the neuropathology associated with status epilepticus (SE) and is implicated in the development of epilepsy. While excitotoxic mechanisms are well-known mediators affecting mitochondrial health following SE, whether hyperactivation of poly(ADP-ribose) polymerase-1 (PARP-1) also contributes to SE-induced mitochondrial dysfunction remains to be examined. Here we first evaluated the temporal evolution of poly-ADP-ribosylated protein levels in hippocampus following kainic acid-induced SE as a marker for PARP-1 activity, and found that PARP-1 was hyperactive at 24 h following SE. We evaluated oxidative metabolism and found decreased NAD⁺ levels by enzymatic cycling, and impaired NAD⁺-dependent mitochondrial respiration as measured by polarography at 24 h following SE. Stereological estimation showed significant cell loss in the hippocampal CA₁ and CA₃ subregions 72 h following SE. PARP-1 inhibition using N-(6-Oxo-5,6-dihydro-phenanthridin-2-yl)- N,N-dimethylacetamide (PJ-34) in vivo administration was associated with preserved NAD⁺ levels and NAD⁺-dependent mitochondrial respiration, and improved CA₁ neuronal survival. These findings suggest that PARP-1 hyperactivation contributes to SE-associated mitochondrial dysfunction and CA₁ hippocampal damage. The deleterious effects of PARP-1 hyperactivation on mitochondrial respiration are in part mediated through intracellular NAD⁺ depletion. Therefore, modulating PARP-1 activity may represent a potential therapeutic target to preserve intracellular energetics and mitochondrial function following SE.
منابع مشابه
Doxorubicin-induced necrosis is mediated by poly-(ADP-ribose) polymerase 1 (PARP1) but is independent of p53
Necrosis, unregulated cell death, is characterized by plasma membrane rupture as well as nuclear and cellular swelling. However, it has recently been reported that necrosis is a regulated form of cell death mediated by poly-(ADP-ribose) polymerase 1 (PARP1). PARP1 is thought to mediate necrosis by inducing DNA damage, although this remains unconfirmed. In this study, we examined the mechanisms ...
متن کاملP2X7 receptor-mediated PARP1 activity regulates astroglial death in the rat hippocampus following status epilepticus
Poly(ADP-ribose) polymerase-1 (PARP1) plays a regulatory role in apoptosis, necrosis, and other cellular processes after injury. Recently, we revealed that PARP1 regulates the differential neuronal/astroglial responses to pilocarpine-induced status epilepticus (SE) in the distinct brain regions. In addition, P2X7 receptor (P2X7R), an ATP-gated ion channel, activation accelerates astroglial apop...
متن کاملPoly (ADP-Ribose) Polymerase-1 causes mitochondrial damage and neuron death mediated by Bnip3, J Neurosci. 2014 Nov 26;34(48):15975-87
Hypoxia/ischemia is one of the major causes of mitochondrial dysfunction and neuronal cell death. So far, it has been reported that the DNA damage repair enzyme Poly (ADPRibose) Polymerase-1 (PARP1) gets activated during hypoxia/ischemia, leading to mitochondrial membrane permeability transition and caspase independent neuronal death mediated by nuclear translocation of the mitochondrial proapo...
متن کاملPeroxiredoxin 2 battles poly(ADP-ribose) polymerase 1- and p53-dependent prodeath pathways after ischemic injury.
BACKGROUND AND PURPOSE Ischemic/reperfusion neuronal injury is characterized by accumulation of reactive oxygen species and oxidative DNA damage, which can trigger cell death by various signaling pathways. Two of these modes of death include poly(ADP-ribose) polymerase 1-mediated death or p53- and Bax-mediated apoptosis. The present study tested the hypothesis that peroxiredoxin 2 (PRX2) attenu...
متن کاملPoly(ADP-ribose) polymerase-1 causes mitochondrial damage and neuron death mediated by Bnip3.
Excessive pathophysiological activity of the nuclear enzyme poly(ADP-ribose) polymerase-1 (PARP1) causes neuron death in brain hypoxia/ischemia by inducing mitochondrial permeability transition and nuclear translocation of apoptosis-inducing factor (AIF). Bcl-2/adenovirus E1B 19 kDa-interacting protein (Bnip3) is a prodeath BH3-only Bcl-2 protein family member that is induced in hypoxia, and ha...
متن کامل